Glacial Sands 2D ERI

[et_pb_section admin_label=”section”][et_pb_row admin_label=”row”][et_pb_column type=”4_4″][et_pb_text admin_label=”Glacial Sands” background_layout=”light” text_orientation=”left” use_border_color=”off” border_color=”#ffffff” border_style=”solid”]

Glacial Sands 2D ERI

Cross-section of a Glacial Deposit Based on DC Electrical Resistivity Confirmed by Coring Data

[/et_pb_text][et_pb_image admin_label=”Fig 1 Image” src=”http://geoscy.com/wp-content/uploads/2016/03/25.jpg” show_in_lightbox=”off” url_new_window=”off” use_overlay=”off” animation=”off” sticky=”off” align=”center” force_fullwidth=”off” always_center_on_mobile=”on” use_border_color=”off” border_color=”#ffffff” border_style=”solid”] [/et_pb_image][et_pb_text admin_label=”Fig. 1. ” background_layout=”light” text_orientation=”left” use_border_color=”off” border_color=”#ffffff” border_style=”solid”]

Fig. 1. 2D ERI profile of a glacial deposit (kame) with 4 auger records as control. With in-line electrode spacing of 4 m, the resistivity section is low-resolution. Auger data confirm that high resistivities (orange-red) are sand and gravel; low resistivities (blues) are clay-rich mud.*

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section admin_label=”section” transparent_background=”off” background_color=”#eaeaea” allow_player_pause=”off” inner_shadow=”off” parallax=”off” parallax_method=”off” padding_mobile=”off” make_fullwidth=”off” use_custom_width=”off” width_unit=”on” make_equal=”off” use_custom_gutter=”off”][et_pb_row admin_label=”row”][et_pb_column type=”4_4″][et_pb_image admin_label=”Image” src=”http://geoscy.com/wp-content/uploads/2016/03/26.jpg” show_in_lightbox=”off” url_new_window=”off” use_overlay=”off” animation=”off” sticky=”off” align=”center” force_fullwidth=”off” always_center_on_mobile=”on” use_border_color=”off” border_color=”#ffffff” border_style=”solid”] [/et_pb_image][/et_pb_column][/et_pb_row][et_pb_row admin_label=”Row”][et_pb_column type=”2_3″][et_pb_text admin_label=”Fig. 2.” background_layout=”light” text_orientation=”left” use_border_color=”off” border_color=”#ffffff” border_style=”solid”]

Fig. 2. Simplified lithologic interpretation of 2D resistivity profile in Fig.1 based on the calibration of sediments in the 4 auger cores with resistivity. Contact zone between sand and gravel (relatively resistive) and clay (relatively conductive) primarily consists of sandy loam. *

[/et_pb_text][/et_pb_column][et_pb_column type=”1_3″][et_pb_image admin_label=”Image” src=”http://geoscy.com/wp-content/uploads/2016/03/26.5.jpg” alt=”Legend for ERI Interpretation of Glacial Sediments ” show_in_lightbox=”off” url_new_window=”off” use_overlay=”off” animation=”off” sticky=”off” align=”left” force_fullwidth=”off” always_center_on_mobile=”on” use_border_color=”off” border_color=”#ffffff” border_style=”solid”] [/et_pb_image][/et_pb_column][/et_pb_row][et_pb_row admin_label=”Row”][et_pb_column type=”4_4″][et_pb_text admin_label=”* Beresnev, I. A., et al. (2002)” background_layout=”light” text_orientation=”left” use_border_color=”off” border_color=”#ffffff” border_style=”solid”]

* Beresnev, I. A., Hruby, C. E., and Davis, C. A., 2002, The use of multi-electrode resistivity imaging in gravel prospecting: Journal of Applied Geophysics, v. 49, no. 4, p. 245-254.

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]